AN\
MPSoC’'19

Lockality: a Scalable
Synchronization Lock for

MPSo(Cs

Frédéric Rousseau

TIMA lab - University of Grenoble Alpes

A join work with Maxime France-Pillois et Jérome vV
CEA LETI

UNIVERSITE
1 ' Grenoble
4 Alpes

Need of locks, definition and

implementation

* Parallel programming requires Nroniz
mechanisms. A main one is the synchronization lock
ensuring the mutual exclusion between processes

* A lock enables to protect a shared ressource (memory,
peripherals,...) from concurrent accesses in a multi-
threaded environment

* Alock is usually implemented by a distinct memory
element accessed by the threads through an atomic
primitive

2 leti

Motivations

In MPSoC (shared memory, clustered),the acce
should be promoted, even if several threads acce 0C

* Verified hypothesis: A core that releases a lock is usually the
following one to take it back
Assumption stated by Kuo and all, and Rutgers and all (simulation)
« Verified by us (HW emulation)

Application Reuse rate by core | Reuse rate by cluster
2 SPLASH2 benchmark Choleski ~63% ~66%
applications Water-NSquared ~68% ~75%

Lock reuse ratio of 64-thread applications
Running a on 64-core TSAR MPSoC (16 clusters)

Chen-Chi Kuo, J. Carter, and R. Kuramkote. MP-LOCKs: replacing H/W synchronization primitives with message passing,
International Symposium in High-Performance Computer Architecture, p 284-288, 1999.

J.H. Rutgers, M.J.G. Bekooij, and G.J.M. Smit. An efficient asymmetric distributed lock for embedded multiprocessor
systems, International Conference on Embedded Computer Systems (SAMOS), pages 176-182, July 2012. 3

Challenges

+ A static lock placer
=> A dynamic re-homing of locks should improve performances

+ Existing solution
* Kuo and all: dynamic re-homing of locks
* A centralized solution, based on message passing

* Weaknesses:
* Software solutions with different processing delays
* No scaling-up due to the centralized solution

* Our new solution: Lockality
* A fully hardware decentralized lock re-homing solution

Main idea of Lockality

* Each cluster implements a (HW) Lock-Ma

* Lock Managers exchange data between th m through a
Network on Chip (NoC) — use of broadcast capabilities

Cluster 3

Clustera

| Cross-bar (VCI) |
S VI (I Y ¢

SL1||SL1|[SL1][SL
CPU || CPU || CPU || CPU

Example of use

Cluster 1

Cluster 3

Thread A
;V.It..ltex_id = mutex_create();
h%liltex_lock(Mutex_id, v);
h;liltex_unlock(Mutex_id,)
B;thex_lock(Mutex_id, v);

mutex_unlock(Mutex _id, ...);

ICNRS - Grenoble INP - UJF

Cluster 2

[LockManager [NIC | Cluster 0
¢ ¢

| Cross-bar (VCI) \
g & ¢

SLi|[sa|[sun][sL1
CPU || CPU || CcPU || CPU

Mem

LockManager LockManager

(LM_B) B

Lock ownerid

Request lock

Move lock

Thread B
mutex_lock(Mutex id, ...);

mutex_unlock(Mutex_id, ...);

Challenges in Lockality protocol

All Lock Managers ki v moment the current manac .
a given lock ——_

* except during the transmission of the broadcast frame, which
requires specic handling to prevent race conditions

Lockality requires a specific communication protocol. The
protocol ensures:

* Coherency and consistency of lock managers

* Alock is owned by only one lock manager

* The granting of a lock to at most one thread at a time.
* All lock requests obtain an answer

* Fair granting of a lock

o French patent: n° 1858803
Title : Lock Manager for Multi-core Architectures

7

Challenges in Lockality protocol

* Deadlock free solution
* We first defined all frames needed to impleme e protocol
* We studied the dependencies between frames

* We enumerate all dependencies, and we isolated in particular
the frames that require the completion of induced frames
before completing their function.

- [IWe concluded that at least three independent
communication channels (physic or virtual) are required to
ensure the deadlock free property of our solution.

More details of the HW architecture

~ TSAR Cluster \
—

O)
/COI“E SLZ \
core
VCI
core crossbar Lock
core r —
J
NG J
P2M 3 channels: reuse of the virtual
M2pP cache coherency channels
CLACK tagged “M2P”, “F211” and
“CLACK”
DSPIN |
Router

NO communication infrastructure overhead
when implementing Lockality.

More details of the SW architecture
+ Software stack\
—

Core (Software stack)

MMU
/ Linux module \\
User Application Library lockality.a Lockality_mod.ko Lock
Lockality_mutex_create() Module_init() M
mutex_id = Lockality_mutex_create() { ahager
open(« /dev/lockality_driver »...) Module_exit()
Lockality_mutex_lock(mutex_id, ...) ioctl(driver, ...)
} » My_ioctl_function(...) >
Lockality_mutex_unlock(mutex_id,...) Lockality_mutex_delete(mutex_id,...)
..... static struct file_operations fops = Memo
o I ry
Lockality_mutex_delete(mutex_id,...) Lockality_mutex_lock(mutex_id, ...) L2
Lockality_mutex_unlock(mutex_id,...)

K Lockality driver j/

/

10

ICNRS - Grenoble INP - UJF

Evaluation platform

* a fully coherent shared memory MPSoC platfo
* a clustered MPSoC architecture based on a NoC

* each cluster is mainly made of four MIPS32 processors with a private L1
cache

* L2 cache is also a shared memory segment. Each L2 memory is designed
to cache a section of the global memory and the L2 cache of a cluster
can be accessed by cores inside and outside the cluster

* Veloce2 Quattro emulator

* a full Register Transfer Level system model, with a cycle accurate
precision
* a port of Linux kernel 4.6 and uClibc

i

* We bind only one thread on each core to avoid interferences from the
scheduling policy

1

Performances

* Comparaison with the Posix P

Delay between the emission of the lock

Lock implementation | Local lock | Distant lock
request VCl frame from the core to the
Pthread 48 cycles | 136 cycles Lock Manager in the case of Lockality or
Lockality 2 cycles 34 cycles to the L2 cache in the case of the Pthread

Median delays of physical lock acquisitions

Gain brought by Lockality:
about 50 to 100 cycles.

Pthread library implements
a more complex locking
functions that supports

recursive mutex.

a
2 leti
ceatech

I noble L

Mutex, and the reception by the core of

the frame granting the lock access.

Implementation Local lock | Distant lock
Pthread : pthread_mutex_lock 373 cycles | 377 cycles
Lockality : lockality _mutex_lock | 115 cycles | 121 cycles
Pthread : pthread_mutex_unlock | 726 cycles | 795 cycles
Lockality : lockality _mutex_unlock | 207 cycles -

Delays for the locking functions

12

* 16 lockality locks implenTe@\

* A 64 cores architectures (16 clusters of 4 coress

Performances

Application Cholesky Water-NSquared
Without Lockality | 30160 x 103 cycles 209 146 X 10° cycles
With Lockality 48 cycles
Gain

2 SPLAH2 benchmark applications

Module Area Number of cells
TSAR Cluster 559972um=(") 1,180, 837
(without memories)
Lock Manager 1 ; _

HW implementation in 22 nm technology

Impact of Lockality difficult
to determine!

- Effect on network and memory

contention

- Different cache memory accesses

Very small impact
in terms of area

13

Lockality: Re-homi
—~—

* Good performance compared to Posix Pthread library

* Even if the Posix Pthread implements more complex locks

« Difficult to evaluate the overall gain in running applications
* Modification of network and memory contention
* Modification of caches accesses

« Patent of Lockality

> leti 14

AN\
MPSoC’'19

Lockality: a Scalable
Synchronization Lock for

MPSo(Cs

Frédéric Rousseau

TIMA lab - University of Grenoble Alpes

A join work with Maxime France-Pillois et Jéro
CEA LETI

UNIVERSITE
1 ' Grenoble
4 Alpes

Measurement tool-chain

(... \ (_. .. \
i MPSoC RTL Design : Analyze tools set

9 3 =5 [A
glk _ Lock analyzer
P jik - J
i|| Signals ||: [A
o . | lextraction Timing analyzer
. A J
\ Emulator y \ PC Host y
Acquisition phase Data processing phase

16

Lockality protocol

+ Set of the frames de

| Name Description |
LOCK_INIT Request to a Lock Manager

to instantiate a lock with the ID
passed in parameter of the frame

LOCK_INIT ACK Acknowledgement of lock instantiation
LOCK_DEL Request for removal of the lock
whose ID is passed in parameter
LOCK_REQ Request for the lock granting
LOCK_MOV Information of a lock move

(lock access grant +
transfer of partial ownership)

broadcast
LOCK_LOCKED Information of busy lock
LOCK_MOVED Acknowledgement of full transfer
of lock ownership
LOCK_NEXT_CLUSTER Request for the enqueuing of

the Lock Manager ID to the list
LOCK_NEXT_ACK Acknowledgment of LOCK_NEXT_CLUSTER

processing
LOCK_MOV_ACK Acknowledgment of lock move
by a Lock Manager
LOCK_ERR Error: cannot perform

the requested operation

17

ICNRS - Grenoble INP - UJF

