
Lockality: a Scalable
Synchronization Lock for 

MPSoCs
Frédéric Rousseau

TIMA lab – University of Grenoble Alpes

1

A join work with Maxime France-Pillois et Jérôme Martin
CEA LETI



* Parallel programming requires synchronization
mechanisms. A main one is the synchronization lock 
ensuring the mutual exclusion between processes

* A lock enables to protect a shared ressource (memory, 
peripherals,...) from concurrent accesses in a multi-
threaded environment

* A lock is usually implemented by a distinct memory 
element accessed by the threads through an atomic 
primitive

Need of locks, definition and 
implementation

2



* Improving performances of locks
* In MPSoC (shared memory, clustered), the access to local lock 

should be promoted, even if several threads access the lock

* Verified hypothesis: A core that releases a lock is usually the 
following one to take it back
* Assumption stated by Kuo and all, and Rutgers and all (simulation)
* Verified by us (HW emulation)

3

Motivations

Lock reuse ratio of 64-thread applications 
Running a on 64-core TSAR MPSoC (16 clusters)

2 SPLASH2 benchmark
applications

Chen-Chi Kuo, J. Carter, and R. Kuramkote. MP-LOCKs: replacing H/W synchronization primitives with message passing, 
International Symposium in High-Performance Computer Architecture, p 284–288, 1999.

J.H. Rutgers, M.J.G. Bekooij, and G.J.M. Smit. An efficient asymmetric distributed lock for embedded multiprocessor
systems, International Conference on Embedded Computer Systems (SAMOS), pages 176–182, July 2012.



4

Challenges 
* A static lock placement in memory is non-optimal

=> A dynamic re-homing of locks should improve performances

* Existing solution
* Kuo and all: dynamic re-homing of locks

* A centralized solution, based on message passing
* Weaknesses: 

* Software solutions with different processing delays
* No scaling-up due to the centralized solution

* Our new solution: Lockality
* A fully hardware decentralized lock re-homing solution



5

Main idea of Lockality 
* Each cluster implements a (HW) Lock Manager
* Lock Managers exchange data between them through a 

Network on Chip (NoC) – use of broadcast capabilities



6

Example of use

Thread A
. . .
Mutex_id = mutex_create();
. . .
mutex_lock(Mutex_id, …);
. . .
mutex_unlock(Mutex_id, …);
. . .
mutex_lock(Mutex_id, …);
. . .
mutex_unlock(Mutex_id, …);
. . .

Thread B
. . .

mutex_lock(Mutex_id, …);
. . .
. . .
mutex_unlock(Mutex_id, …);

Re-homing of lock



7

Challenges in Lockality protocol
* All Lock Managers know at any moment the current manager for 

a given lock
* except during the transmission of the broadcast frame, which

requires specic handling to prevent race conditions

* Lockality requires a specific communication protocol. The 
protocol ensures:
* Coherency and consistency of lock managers
* A lock is owned by only one lock manager
* The granting of a lock to at most one thread at a time.
* All lock requests obtain an answer
* Fair granting of a lock
* . . . French patent: n° 1858803 

Title : Lock Manager for Multi-core Architectures 



8

Challenges in Lockality protocol
* Deadlock free solution
* We first defined all frames needed to implement the protocol
* We studied the dependencies between frames
* We enumerate all dependencies, and we isolated in particular

the frames that require the completion of induced frames 
before completing their function.

➜�We concluded that at least three independent
communication channels (physic or virtual) are required to 
ensure the deadlock free property of our solution.



More details of the HW architecture
TSAR Cluster

3 channels: reuse of the virtual
cache coherency channels
tagged “M2P”, “P2M” and 
“CLACK”

NO communication infrastructure overhead
when implementing Lockality.

9



* Software stack

More details of the SW architecture

10



11

Evaluation platform

* TSAR MPSoC architecture
* a fully coherent shared memory MPSoC platform

* a clustered MPSoC architecture based on a NoC

* each cluster is mainly made of four MIPS32 processors with a private L1 
cache

* L2 cache is also a shared memory segment. Each L2 memory is designed
to cache a section of the global memory and the L2 cache of a cluster 
can be accessed by cores inside and outside the cluster

* Veloce2 Quattro emulator
* a full Register Transfer Level system model, with a cycle accurate

precision
* a port of Linux kernel 4.6 and μClibc

* We bind only one thread on each core to avoid interferences from the 
scheduling policy



12

Performances

* Comparaison with the Posix Pthread library implementation

Median delays of physical lock acquisitions

Delays for the locking functions

Delay between the emission of the lock
request VCI frame from the core to the 
Lock Manager in the case of Lockality or 
to the L2 cache in the case of the Pthread
Mutex, and the reception by the core of 
the frame granting the lock access.

Gain brought by Lockality: 
about 50 to 100 cycles.

Pthread library implements
a more complex locking
functions that supports 
recursive mutex.



* 16 lockality locks implemented
* A 64 cores architectures (16 clusters of 4 cores)

Performances

2 SPLAH2 benchmark applications

13

Very small impact
in terms of area

HW implementation in 22 nm technology

Impact of Lockality difficult
to determine !

- Effect on network and memory 
contention

- Different cache memory accesses



* Lockality: Re-homing of locks solution

* Good performance compared to Posix Pthread library
* Even if the Posix Pthread implements more complex locks

* Difficult to evaluate the overall gain in running applications
* Modification of network and memory contention
* Modification of caches accesses

* Patent of Lockality

14

Conclusion



Lockality: a Scalable
Synchronization Lock for 

MPSoCs
Frédéric Rousseau

TIMA lab – University of Grenoble Alpes

1

A join work with Maxime France-Pillois et Jérôme Martin
CEA LETI



16

Measurement tool-chain
* A non intrusive measurement tool-chain



* Set of the frames defined for the 3 required channels

Lockality protocol

17


